
 

 

 

 

Homework 3: Intelligent 

Systems Simple Classifiers  
 

Presented by: 

Aswin Balasubramaniam 

 

Course Name/Number: Intelligent Systems (EECE 6036) 

Class section: 001 

Due Date: November 12th, 2019 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 2 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

Problem 1: Classification using Backpropagation with Momentum 

Problem Summary:  

In this problem a two-layer feed-forward neural network is implemented. The network is trained 

using backpropagation with momentum to classify the handwritten numbers (0 to 9) correctly. 

The provided MNIST dataset is used to train and test the network generated. 

System Description: 

Number of hidden neurons: The number of hidden neurons was set to varying values from 150 to 200 

during the testing phase. Due to time constraints and limitations of code execution time an exhaustive 

investigation of the effect of hidden neurons was not conducted, but it was observed that 150 hidden 

neurons provided the desired results of hit rates for the given set of parameters (learning rates, 

momentum, and epochs).  

Learning rate: The learning rate was set to a small value of 0.1 when tests were conducted. The learning 

rates for both the layers were set to the same value. This generated desired results and hence was not 

changed.  

Momentum: The momentum parameter, alpha, was set to a value between 0 and 1. To get the errors to 

converge to a minimum value alpha was set to 0.5. Together with a learning rate of 0.1 and alpha of 0.5 

the observed hit rates were desirable and were set as the parameters for the network.  

Output threshold criteria: The initial output threshold criteria was set following the suggestion given in 

the homework document. A threshold was set to decide if a neuron’s output should be a 0 or 1. 

Thresholds of 0.75 and 0.55 to detect 1’s and 0.25 and 0.1 to detect 0’s were set. This did not provide 

consistent results as the maximum values from the network kept fluctuating leading to network outputs to 

be set as 0’s. The criteria that was implemented searched for the highest output value (highest firing 

neuron) generated using the network and set that value to 1 while setting the remaining values to 0.  

Rule for choosing the initial weights: The weights were initialized following the Xavier initialization 

method formulated by Glorot & Bengio. The weights were initialized to random values between (-a, +a) 

where a~√
6

𝑁𝑆+𝑁𝑇
 where Ns = number of neurons in the source layer and NT = number of neurons in target 

layer. When the weights were initially to set to higher values (-1 to 1), the calculated weight and input 

sums were of high values and generated sigmoid values of 1 consistently.  

Stopping criteria: The stopping criteria for training was determined after multiple trials of using epoch 

values ranging from 100 to 200. The number of epochs was set to 100 as it generated desired results and 

increasing the hit rate above 170 started decreasing the hit rate values observed for testing set despite 

increasing the hit rate values for the training set. Setting the epoch to a value higher than 170 made the 

network to start overfitting and thereby losing the ability to generate desired results.   

Results: 

Table 1.1 shows the confusion matrix generated using the training dataset of the final network (last 

epoch). Table 1.2 shows the confusion matrix generated using the testing dataset. Figure 1.1 shows the 

time series plot of training set error values vs. epochs.  



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 3 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

 

 

 

 

 

 

 

 

 

 

 

Confusion Matrix of Training Set for Final Network 

 Classification of Numbers  

 0 1 2 3 4 5 6 7 8 9 Total 

T
ru

e 
V

a
lu

es
 o

f 
N

u
m

b
er

s 0 362 0 0 0 0 0 0 0 0 0 362 

1 0 464 1 0 0 0 1 0 0 0 466 

2 0 1 409 1 3 2 2 2 2 0 422 

3 0 0 3 391 0 0 0 4 1 0 399 

4 0 0 1 0 404 0 0 0 0 0 405 

5 1 0 0 0 0 361 1 0 0 1 364 

6 1 0 0 0 1 1 380 0 0 0 383 

7 1 0 0 0 0 0 0 405 0 0 406 

8 0 0 1 0 0 0 0 0 385 0 386 

9 2 2 0 4 2 1 1 0 2 393 407 

 Total 367 467 415 396 410 365 385 411 390 394 4000 

Confusion Matrix of Testing Set 

 Classification of Numbers  

 0 1 2 3 4 5 6 7 8 9 Total 

T
ru

e 
V

a
lu

es
 o

f 
N

u
m

b
er

s 0 94 0 0 0 0 1 2 0 1 0 98 

1 0 102 0 0 0 0 1 1 1 0 105 

2 1 0 97 1 2 0 0 3 4 0 108 

3 0 1 2 91 0 4 0 1 2 0 101 

4 0 0 0 0 91 0 1 0 0 3 95 

5 1 0 0 1 0 85 1 0 3 1 92 

6 2 1 0 0 0 2 74 0 0 0 79 

7 0 3 4 0 2 0 0 95 0 2 106 

8 0 0 1 0 1 2 2 0 96 1 103 

9 0 1 0 1 7 0 0 1 3 100 113 

 Total 98 108 104 94 103 94 81 101 110 107 1000 

Table 1.1: Confusion matrix of training set for final network 

Table 1.2: Confusion matrix of testing set 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 4 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

Analysis of Results: 

Using the obtained results it can be seen that the generated two-layered neural network was able to 

classify the images very accurately using the training and testing datasets. In Table 1.1 the output of the 

final network using the training dataset provides a hit rate of 98.85% and in Table 1.2 the output of the 

network using the test set provides a hit rate of 91.9%.  Figure 1.1 shows how the error rate decreases as 

the number of epochs are increased.  

Using the confusion matrix of the training and testing sets in Table 1.1 it can be seen that numbers 0, 1, 4, 

5, 6, and 8 were detected with a higher accuracy value when compared to the numbers 2, 3, 7 and 9. This 

suggests that numbers 2, 3 and 9 are relatively difficult to classify using the generated network. Using 

more varied datasets for training would probably help improve the classification and increase the hit rate 

values.  

 

 

 

 

 

 

 

 

Figure 1.1: Plot of error values vs. epochs for the training set 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 5 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

Problem 2: Reconstruction using Auto-Encoder 

Problem Summary: 

In this problem an autoencoder is trained using the same data in Problem 1, to reconstruct the input that is 

provided to the network and obtain a good set of features that represent the data set. A one hidden layer 

feedforward network with 784 inputs, 784 outputs, and 150 hidden neurons is trained. The network is 

trained using backpropagation with momentum and J2 loss function is used to evaluate its performance.  

System Description:  

Learning rate: The learning rate was set to 0.01 when tests were conducted. The learning rates for both the 

layers were set to the same value. This generated desired results when compared to a learning rate of 0.1 

and produced lower loss function values within the specified number of training epochs.   

Momentum: The momentum parameter, alpha, was set to 0.5 to get the errors to converge to a minimum 

value quickly. Together with a learning rate of 0.01 and alpha of 0.5 the observed J2 loss function values 

were low. 

Rule for choosing the initial weights: The weights were initialized following the Xavier initialization 

method formulated by Glorot & Bengio as mentioned in Problem 1.  

Stopping criteria: The number of epochs was set to 100 as it generated desired results. Other values of 

epochs were not tested due to time constraints.  

Results: 

Figure 2.1 shows the mean of loss function values of the training (final network) and testing datasets. 

Figure 2.2 shows mean of loss function values for each number on the training (final network) and testing 

datasets. Figure 2.3 shows the time series plot of mean loss function value of training set vs. epochs.  

 

Figure 2.1: Mean of loss function value on training 

and testing dataset 

Figure 2.2: Mean of loss function value for each number 

on training and testing dataset 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 6 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

 

Features: 

Figure 2.4 shows the images of features learned by 20 random hidden neuron weights in problem 2. 

Figure 2.5 shows the images of features learned by corresponding 20 random hidden neuron weights in 

problem 1.  

Comparing Figures 2.4 and 2.5 it can be seen that the features learned by the same hidden neurons in both 

the problems are different. The features learned by a neuron is a combination of varying levels of the 

intensity value of different pixels and weights of the output layer. It is evident that each hidden neuron 

Figure 2.3: Plot of mean of loss function value on 

training dataset vs. epochs  

Figure 2.4: Image of features learned by the 20 

random hidden neurons in problem 2 

Figure 2.5: Image of features learned by the 

corresponding 20 random hidden neurons in problem 1 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 7 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

does not learn a specific geometry of a number but is learning various combinations of intensities of a 

particular digit which makes up the features of an input image. 

Sample Outputs: 

Figure 2.5 shows the images of 8 random samples from the test set and the corresponding outputs 

generated using the autoencoder network. 

 

Analysis of Results: 

Using the results shown in Figure 2.5 one can see that the network was successful in reconstructing the 

inputs with very minimal changes. The loss function values obtained using both the training and testing 

sets fell in the desired range of values. In Figure 2.1 the mean of loss function value for the training set 

was lower than for the testing set, indicating that the network was trained to produced desired results 

using the data available in the training set. In Figure 2.2 the lower values of loss function for the number 1 

indicates the 1 is easier to reconstruct during training and testing. This can be attributed to the non-

complex geometry of the number when compared to other digits like 2 or 8 that produced higher loss 

function values due to its complex geometries of curves and lines. Figure 2.3 shows the effect number of 

epochs have on the loss function values on the training set. Using the plot, it can be seen that as the 

number of epochs for training is increased the mean loss function value decreases and starts to saturate.  

 

 

 

 

 

Figure 2.5: Image of 8 random samples from test set and the 

corresponding outputs generated using the network 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 8 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

Appendix: 

Problem 1 Code: Language: MATLAB 

%%********* Homework 3: Multi Layer Feed Forward Neural Network *********%% 

% ***** Problem 1: Training Using Back Propogation including Momentum 

% ***** Name: Aswin Balasubramaniam ***** % 

% ***** M#: 07525504 ***** % 

% ***** Course: Intelligent Systems (EECE6036)*****% 

% ***********************************************************************%% 

clear all; 

close all; 

clf; 

clc; 

input_layer = 'Input the number of required hidden layers: ';                

hidd_layer = input(input_layer);                            % Get user's input for number of 

hidden layers Note: The code is written to handle only a single layer and this is a place holder 

input_neuron = 'Input the number of hidden neurons to be implemented: ';     

h_n = input(input_neuron);                                  % Get user's input for number of 

hidden neurons in the layer     

o_n = 10;                                                   % Variable for the number of output 

neurons 
  

% Reading Data in Text File 

img_data = load('MNISTnumImages5000.txt'); 

img_label = load('MNISTnumLabels5000.txt'); 
  

% Randomizing the data points, splitting the data to training and 

% testing sets and saving them as txt files 

r_num = randperm(size(img_data,1)); 

r_ord_data = img_data(r_num,:); 

r_ord_lab = img_label(r_num,:); 

tr_data = r_ord_data(1:4000,:); 

tr_lab = r_ord_lab(1:4000,:); 

te_data = r_ord_data(4001:5000,:); 

te_lab = r_ord_lab(4001:5000,:); 

dlmwrite('HW3_Train_Data.txt', tr_data); 

dlmwrite('HW3_Test_Data.txt', te_data); 

dlmwrite('HW3_Train_Label.txt', tr_lab); 

dlmwrite('HW3_Test_Label.txt', te_lab); 
  

% Neural Network Variables Initialization 

epo = 100;                                  % Number of epochs 

eta_1 = 0.1;                                % Learning rate for input layer 

eta_2 = 0.1;                                % Learning rate for output layer 

alpha = 0.5;                                % Parameter for momentum 

true_train(epo+1,1) = (0);                  % Empty array for training true counts 

true_test = 0;                              % Empty array for testing true counts 

conf_train(1:10,1:10) = (0);                % Empty array for confusion matrix for training set 

conf_test(1:10,1:10) = (0);                 % Empty array for confusion matrix for testing set 

w_ip = normrnd(0, sqrt(6/(h_n+length(tr_data(1,:)))), [h_n, length(tr_data(1,:))+1]); % Input 

weights being initialized using Xavier initializtion method 

w_op = normrnd(0, sqrt(6/(h_n+o_n)), [o_n, h_n+1]); % Output weights being initialized using 

Xavier initializtion method 

d_lay2(1,1:o_n) = (0);                      % Empty array to store the delta values of layer 2 

d_w_op(1:o_n, 1:h_n+1) = (0);               % Empty array to store the delta weight values for 

output weights 

d_w_ip(1:h_n, 1:length(tr_data(1,:))+1) = (0);  % Empty array to store the delta weight values 

for input weights 
  

% Training the Neural Network  

for k = 1:epo+1 

    for i=1:length(tr_data)                 % Loop that goes over all the training data  

        t_label = tr_lab(i);                % Stores the label of the training point 

        actual_op(1:o_n) = (0);             % Creates empty matrix to save values of actual 

output 

        actual_op(t_label+1) = 1;           % Adds 1 (actual neuron output) to the location of 

corresponding neuron 
             



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 9 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

        lay1_neu_sum = (w_ip*([1 tr_data(i,:)]'))';     % layer 1 sum 

        lay1_op = 1./(1+exp(-lay1_neu_sum));            % Layer 1 output 
         

        lay2_neu_sum = (w_op*([1 lay1_op]'))';          % Layer 2 sum 

        lay2_op = 1./(1+exp(-lay2_neu_sum));            % Layer 2 output 
             

        d_lay2 = (actual_op - lay2_op).*lay2_op.*(1-lay2_op);   % Delta of layer 2: Back 

propogation 

        d_w_op = eta_2*d_lay2'*([1 lay1_op]) + alpha*d_w_op;    % Delta of layer 2 weights 

        w_op = w_op + d_w_op;                                   % Updated weights for layer 2 
         

        d_lay1_sum = w_op(1:o_n,2:h_n+1)'*d_lay2';              % Delta of layer 1: Back 

propogation 

        d_lay1 = lay1_op.*(1-lay1_op).*d_lay1_sum';              

        d_w_ip =  eta_1*d_lay1'*([1 tr_data(i,:)]) + alpha*d_w_ip;  % Delta of layer 1 weights 

        w_ip = w_ip + d_w_ip ;                                  % Updated weights for layer 1 
         

        [x,y] = max(lay2_op);                           % Applies threshold to network output to 

generate the required output 

        lay2_op(y) = 1;                                  

        lay2_op(lay2_op<x) = 0; 

        if (isequal(lay2_op, actual_op))                % Checks if the actual output is the same 

as generated output 

            true_train(k) = true_train(k) + 1; 

        end 

        if k==epo+1                                     % Updates the confusion matrix for 

trainig at the end of training 

            conf_train(find(actual_op == max(actual_op)), find(lay2_op == max(lay2_op))) = 

conf_train(find(actual_op == max(actual_op)), find(lay2_op == max(lay2_op))) + 1; 

        end 

    end 

end 
  

% Testing the Neural Network 

for test = 1:length(te_data)                            % Loop that goes over all the testing 

data  

    tst_label = te_lab(test);                           % Stores the label of the testing point 

    actual_op(1:o_n) = (0);                             % Creates empty matrix to save values of 

actual output 

    actual_op(tst_label+1) = 1;                         % Adds 1 (actual neuron output) to the 

location of corresponding neuron 
     

    lay1_neu_sum = (w_ip*([1 te_data(test,:)]'))';      % layer 1 sum 

    lay1_op = 1./(1+exp(-lay1_neu_sum));                % Layer 1 output 
     

    lay2_neu_sum = (w_op*([1 lay1_op]'))';              % layer 2 sum 

    lay2_op = 1./(1+exp(-lay2_neu_sum));                % Layer 2 output 
     

    [x,y] = max(lay2_op);                               % Applies threshold to network output to 

generate the required output 

    lay2_op(y) = 1; 

    lay2_op(lay2_op<x) = 0; 

    if (isequal(lay2_op, actual_op)) 

        true_test = true_test + 1; 

    end                                                 % Updates the confusion matrix for 

testing 

    conf_test(find(actual_op == max(actual_op)), find(lay2_op == max(lay2_op))) = 

conf_test(find(actual_op == max(actual_op)), find(lay2_op == max(lay2_op))) + 1; 

end 
  

% Output Generation 

% Calculate the error values during training  

hit_rates_train = true_train/length(tr_data); 

E_train = 1 - hit_rates_train; 

E_plot_x = [0 10:10:epo]; 

E_train_plot = [E_train(1) (E_train(11:10:epo+1))']; 
  

% Plot the error values of the training data  

figure(1); 

plot(E_plot_x, E_train_plot, 'bo-'); 

title('Training Error Values of Neural Network vs. Epochs'); 

xlabel('Epochs'); 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 10 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

ylabel('Error values (1-hit-rate)'); 

xticks([0 10:10:epo]); 
  

% Saving neural network weight values 

dlmwrite('HW3P1_Trained_IPweights.txt', w_ip); 

dlmwrite('HW3P1_Trained_OPweights.txt', w_op); 
  

 

Problem 2 Code: Language: MATLAB 

%%********* Homework 3: Multi Layer Feed Forward Neural Network *********%% 

% ***** Problem 2: Auto Encoder 

% ***** Name: Aswin Balasubramaniam ***** % 

% ***** M#: 07525504 ***** % 

% ***** Course: Intelligent Systems (EECE6036)*****% 

% ***********************************************************************%% 

clear all; 

close all; 

clf; 

clc; 

hidd_layer = 1;                         % Variable for number of hidden layers 

h_n = 150;                              % Variable for number of hidden neurons in hidden layer 

o_n = 784;                              % Variable for number of output neurons 
  

% Reading Randomized Training & Testing Data & Labels Saved in Problem 1 

tr_data = load('HW3_Train_Data.txt');    

tr_lab = load('HW3_Train_Label.txt'); 

te_data = load('HW3_Test_Data.txt'); 

te_lab = load('HW3_Test_Label.txt'); 
  

tic                                     % Start timer to record time of program run 
  

% Neural Network Variables Initialization 

epo = 100;                              % Number of epochs 

eta_1 = 0.01;                           % Learning rate for input layer 

eta_2 = 0.01;                           % Learning rate for output layer 

alpha = 0.5;                            % Parameter for momentum 

J2_train = [];                          % Empty array for J2 loss function training data 

J2_test = [];                           % Empty array for J2 loss function training data 

J2_epoch_train(1:epo+1) = (0);          % Empty array for J2 loss function training data per 

epoch 

w_ip = normrnd(0, sqrt(6/(h_n+length(tr_data(1,:)))), [h_n, length(tr_data(1,:))+1]); % Input 

weights being initialized using Xavier initializtion method 

w_op = normrnd(0, sqrt(6/(h_n+o_n)), [o_n, h_n+1]); % Output weights being initialized using 

Xavier initializtion method 

d_lay2(1,1:o_n) = (0);                  % Empty array to store the delta values of layer 2 

d_w_op(1:o_n, 1:h_n+1) = (0);           % Empty array to store the delta weight values for output 

weights 

d_w_ip(1:h_n, 1:length(tr_data(1,:))+1) = (0); % Empty array to store the delta weight values for 

input weights 
  

% Training the Neural Network  

for k = 1:epo+1 

    for i=1:length(tr_data)              % Loop that goes over all the training data  

        t_label = tr_lab(i);             % Stores the label of the training point 

        actual_op = tr_data(i,:);        % Stores the input to network to be compared with output 

of network 
  

        lay1_neu_sum = (w_ip*([1 tr_data(i,:)]'))';     % layer 1 sum 

        lay1_op = 1./(1+exp(-lay1_neu_sum));            % Layer 1 output 
         

        lay2_neu_sum = (w_op*([1 lay1_op]'))';          % Layer 2 sum 

        lay2_op = 1./(1+exp(-lay2_neu_sum));            % Layer 2 output 
         

        d_lay2 = (actual_op - lay2_op).*lay2_op.*(1-lay2_op);   % Delta of layer 2: Back 

propogation 

        d_w_op = eta_2*d_lay2'*([1 lay1_op]) + alpha*d_w_op;    % Delta of layer 2 weights 

        w_op = w_op + d_w_op;                                   % Updated weights for layer 2 
         

        d_lay1_sum = w_op(1:o_n,2:h_n+1)'*d_lay2';              % Delta of layer 1: Back 

propogation 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 11 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

        d_lay1 = lay1_op.*(1-lay1_op).*d_lay1_sum';              

        d_w_ip =  eta_1*d_lay1'*([1 tr_data(i,:)]) + alpha*d_w_ip;  % Delta of layer 1 weights 

        w_ip = w_ip + d_w_ip ;                                  % Updated weights for layer 1 
         

        error_mat_e = (actual_op-lay2_op).^2;                   % Calculating the J2 loss 

function for the input being analyzed every epoch 

        error_e = 0.5*sum(error_mat_e); 

        J2_epoch_train(k) = J2_epoch_train(k) + error_e; 

        % Calculating the J2 loss function at the end of epoch for evey 

        % number seperately 

        if k == epo 

            error_mat = (actual_op-lay2_op).^2; 

            error = 0.5*sum(error_mat); 

            J2_train(t_label+1,end+1) = error; 

        end 

    end 

end 
  

% Testing the Neural Network 

for test = 1:length(te_data)                                    % Loop that goes over all the 

testing data  

    tst_label = te_lab(test);                                   % Stores the label of the testing 

point 

    actual_op = te_data(test,:);                                % Stores the input to network to 

be compared with output of network 
     

    lay1_neu_sum = (w_ip*([1 te_data(test,:)]'))';              % layer 1 sum 

    lay1_op = 1./(1+exp(-lay1_neu_sum));                        % Layer 1 output 
  

    lay2_neu_sum = (w_op*([1 lay1_op]'))';                      % layer 2 sum 

    lay2_op = 1./(1+exp(-lay2_neu_sum));                        % Layer 2 output 
     

    error_mat = (actual_op-lay2_op).^2;                         % Calculating the J2 loss 

function for the input being analyzed every epoch 

    error = 0.5*sum(error_mat); 

    J2_test(tst_label+1,end+1) = error; 

end 
  

% Output Generation 

% Calculate the mean J2 loss function values for training, testing and 

% individuual numbers in training and testing data at the final epoch 

train_num = sum(J2_train~=0,2); 

train_sum = sum(J2_train,2); 

mean_J2train_num = train_sum./train_num; 

mean_J2train_all = sum(train_sum)/sum(train_num); 
  

test_num = sum(J2_test~=0,2); 

test_sum = sum(J2_test,2); 

mean_J2test_num = test_sum./test_num; 

mean_J2test_all = sum(test_sum)/sum(test_num); 
  

% Plot the J2 loss function values of the neural network every 10th epoch 

figure(1) 

Graph1_labels = categorical({'Mean Loss on Training set','Mean Loss on Test set'}); 

Loss_mean = [mean_J2train_all; mean_J2test_all]; 

bar(Graph1_labels, Loss_mean); 

title('Mean Loss on Training and Test Set'); 

ylabel('J2 Mean Loss Values'); 
  

% Plot the mean J2 loss function values of the neural network for indiviual 

% numbers in training and testing data set 

figure(2)  

Graph2_labels = categorical({'Mean Loss 0','Mean Loss 1','Mean Loss 2','Mean Loss 3','Mean Loss 

4','Mean Loss 5','Mean Loss 6','Mean Loss 7','Mean Loss 8','Mean Loss 9'}); 

Loss_num_mean = [mean_J2train_num(1) mean_J2test_num(1); mean_J2train_num(2) mean_J2test_num(2); 

mean_J2train_num(3) mean_J2test_num(3); mean_J2train_num(4) mean_J2test_num(4); 

mean_J2train_num(5) mean_J2test_num(5); mean_J2train_num(6) mean_J2test_num(6); 

mean_J2train_num(7) mean_J2test_num(7); mean_J2train_num(8) mean_J2test_num(8); 

mean_J2train_num(9) mean_J2test_num(9); mean_J2train_num(10) mean_J2test_num(10)]; 

bar(Graph2_labels, Loss_num_mean); 

title('Mean Loss on Training and Test Set for each number'); 



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 12 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

ylabel('J2 Mean Loss Values'); 

legend ('Training set','Test set'); 
  

% Plot the mean J2 loss function values of the neural network in training and testing data set 

figure(3) 

J2train_plot_x = [0 10:10:epo]; 

J2_train_plot = [J2_epoch_train(1)/4000 (J2_epoch_train(11:10:epo+1)/4000)]; 

plot(J2train_plot_x, J2_train_plot, 'bo-'); 

title('Mean Loss on Training Set vs. Epochs'); 

xlabel('Epochs'); 

ylabel('Mean J2 values'); 

xticks([0 10:10:epo]); 
  

% Images of 20 random hidden neuron feature using their weights  

% Code reference: Dr. Ali Minai's code showMNISTnum.m 

figure(4) 

r_hidd_neu = randperm(150,20); 

dlmwrite('HW3P2_20RandomHiddenNeuronNum.txt', r_hidd_neu); 

U = w_ip(r_hidd_neu, 2:785); 

for i=1:4 

    for j = 1:5 

        v = reshape(U((i-1)*5+j,:),28,28); 

        subplot(4,5,(i-1)*5+j) 

        image(64*v)  

        colormap(gray(64)); 

        set(gca,'xtick',[]) 

        set(gca,'xticklabel',[]) 

        set(gca,'ytick',[]) 

        set(gca,'yticklabel',[]) 

        set(gca,'dataaspectratio',[1 1 1]); 

    end 

end 

a1 = axes;  

t1 = title('Images of Problem 2 20 Random Hidden Neuron Weights'); 

a1.Visible = 'off'; 

t1.Visible = 'on'; 
  

% Images of corresponding 20 random hidden neurons features in P1 using their weights  

% Code reference: Dr. Ali Minai's code showMNISTnum.m 

figure(5) 

P1_w_ip = load('HW3P1_Trained_IPweights.txt'); 

U = P1_w_ip(r_hidd_neu, 2:785); 

for i=1:4 

    for j = 1:5 

        v = reshape(U((i-1)*5+j,:),28,28); 

        subplot(4,5,(i-1)*5+j) 

        image(64*v)  

        colormap(gray(64)); 

        set(gca,'xtick',[]) 

        set(gca,'xticklabel',[]) 

        set(gca,'ytick',[]) 

        set(gca,'yticklabel',[]) 

        set(gca,'dataaspectratio',[1 1 1]); 

    end 

end 

a2 = axes;  

t2 = title('Images of Problem 1 Corresponding 20 Random Hidden Neuron Weights from P2'); 

a2.Visible = 'off'; 

t2.Visible = 'on'; 
  

% Images of random original 8 test data used and data recreated using the network 

% Code reference: Dr. Ali Minai's code showMNISTnum.m 

figure(6) 

ntk_img = []; 

r_test_data = randperm(1000,8); 

org_img = te_data(r_test_data, :); 

for t = 1:length(r_test_data)    

    lay1_neu_sum = (w_ip*([1 org_img(t,:)]'))'; 

    lay1_op = 1./(1+exp(-lay1_neu_sum)); 
  



 

Homework 3: Intelligent Systems Simple Classifiers 

Page 13 

 

Aswin Balasubramaniam 2019  University of Cincinnati 
 

    lay2_neu_sum = (w_op*([1 lay1_op]'))'; 

    lay2_op = 1./(1+exp(-lay2_neu_sum)); 

    ntk_img(t, :) = lay2_op; 

end 

for i=1:2 

    if i==1 

        U = org_img; 

    else 

        U = ntk_img; 

    end 

    for j = 1:8 

        v = reshape(U(j,:),28,28); 

        subplot(2,8,(i-1)*8+j) 

        image(64*v)  

        colormap(gray(64)); 

        set(gca,'xtick',[]) 

        set(gca,'xticklabel',[]) 

        set(gca,'ytick',[]) 

        set(gca,'yticklabel',[]) 

        set(gca,'dataaspectratio',[1 1 1]); 

    end 

end 

a3 = axes;  

t3 = title('Original Test Image vs. Reconstructed Image'); 

a3.Visible = 'off'; 

t3.Visible = 'on'; 
  

% Saving neural network weight values 

dlmwrite('HW3P2_Trained_IPweights.txt', w_ip); 

dlmwrite('HW3P2_Trained_OPweights.txt', w_op); 
  

toc                                       % Start timer to record time of program run 

 

 


